

GCSE Chemistry 1

Revision Guide

Contents	
Elements	2
Physical Properties	3
The Periodic Table- Mendeléev	4
Compounds	5
The Ionic Bond	6
Formulae	7
Metals	8
Displacement Reactions	9
The Blast Furnace	11
Electrolysis of Lead (II) Bromide	12
Electrolysis - Aluminium	13
Uses of Metals	15
Nano Science	16
Non-metals - Electrolysis of water	18
Uses of non-metals	20
Fluoridation of water supply	21
Acid Reactions	23
Method for preparing crystals	27
Fuels - Crude Oil	28
Cracking	30
Making Plastics(Polymerisation)	31
Properties of Plastics	31
Tectonic Plates - Wegener	32
The Atmosphere	35
Global Warming	37
Acid Rain	38

Periodic Table

Scientists as far back as 1817 found patterns in the reactivity of elements; however it was Mendeléev (1869) who first arranged the elements in a layout recognisable as a Periodic Table.

He placed the elements into 8 groups, in each group elements reacted similarly. Elements were arranged according to

- 1. Increasing atomic mass (top number)
- 2. Similar chemical properties

(R)

Confident in his work he left **gaps** predicting that some elements that were not discovered at the time should be placed there as they would have similar properties

Tabl Cyfnodol yr Elfennau Periodic Table of the Elements The periodic table is also Grŵp / Grou I II III IV V VI VII 0 arranged by now in increasing ydroger. H lydrogen Helium atomic number (bottom number) Lithium Beryliwn Be Beryllium 4 0 Neon There are many more 23 Sodiwm Na Sodium 11 24 35.5 elements now as scientists Magnesium Magnesium 12 S AI Silcon P CI have discovered them over 40 Calsiwm Ca Calcium 20 55 56 59 63.5 72.5 39 Potasie K 19 Manganis Min Manganese 25 Cromiwn Cr Chromiun 24 96 Zine Zine 30 112 Cobalt Copper Cu Copper 29 Galium Galium 31 Scandium Sc Scandium 21 Titanium Titanium 22 V Fe Nicel Ge Arsenig Seleniwr Seleniun 34 Brom the years. These elements Vanadium 23 German 32 119 26 28 2.1 2.4 2.5 26 89 91 93 96 99 101 Y Zeramin Maximum Maximum Maximum Maximum Maximum 1 Yeramin Maximum Maximum Maximum Maximum Maximum 39 40 41 42 4.3 4.4 139 178.5 181 184 186 190 Maximum Tatalant Tatalant Tatalant Maximum Consum Standardin Tatalant 13 20 85.5 88 Rebidium Strontiwm Rb Sr Rubidium Strontium 37 38 115 103 106 108 122 have fitted into the gaps left by Paladiwm Pd Palladium 46 Arian Ag Silver Indiwm In Indium 49 Sn 50 Rhodiwm Cadmiwm Cd Cadmium 48 Sb Telenter lodin Xenon 52 210 Poloniw Rhot Mendeléev. 137 204 209 133 192 195 197 201 207 210 222 Bariwm Ba Barium 56 Platinwa Aur Au Gold Hg Poloniwn Caesium Caesium 55 Indiwit Thallem Phym Bismw Astatir Rn CS Ba La Barlum 55 56 57 223 226 227 Fitanolwim Radiwm Actiniwm Ra Actinium Fr

GCSE Science: Chemistry 1 www.bangor.ac.uk

Compounds

Substance that contains two or more elements joined together chemically

Compound	Formula	No. of elements	No. of atoms				
Sodium Chloride	NaCl	2	2 (1 Na, 1 Cl)				
Sodium Hydroxide	NaOH	3	3 (1 Na, 1 O, 1 H)				
Sodium Oxide	Na ₂ O	2	3 (2 Na, 1 O)				
Sodium Sulfate	Na ₂ SO ₄	3	7 (2 Na, 1 S, 4 O)				
Calcium Carbonate	CaCO ₃	3	5 (1 Ca, 1 C, 3 O)				

Extraction Method

Reactivity Series – metals are placed in order of reactivity by reacting them with oxygen, water and acid. From this data a reactivity series is produced

Reduction is the process of removing oxygen from the ore using carbon

Electrolysis is the process of using electricity to extract a metal

The Reactivity

Ore	Formula	Metal extracted
Bauxite	Al ₂ O ₃	Aluminium
Haematite	Fe ₂ O ₃	Iron

Extraction of Metals

Ores – Metals are found in compounds in rocks which make up the Earth's crust, these are called ores

Extraction is the term for getting pure metal out of the ore; there are two methods of

extracting metals which depend on their reactivity

isplacement Examples	
Iron and copper chloride Fe + C	uCl₂ → Cu + FeCl₂
iron + copper chloride → copper + iro	on chloride
iron is more reactive than copper, as a res	ult iron displaces copper
copper and silver nitrate* Cu + 2AgN	$O_3 \longrightarrow 2Ag + Cu(NO_3)_2$
copper + silver nitrate → silv	er + copper nitrate
copper is more reactive than silver, as a res	ult copper displaces silver
zinc and copper sulphate* Zn + CuSC	$D_4 \longrightarrow Cu + ZnSO_4$
zinc + copper sulfate co	pper+ zinc sulfate
zinc is more reactive than copper, as a res	ult zinc displaces copper
	* higher tier

Copper

Copper has many uses due to its physical properties

Uses	Property
Jewellery	Shiny
electrical Wires	Electrical conduction
saucepans	Heat conduction
pipes	Malleability (create sheets)
Electrical wires	Ductility (create wires)

Titanium

Titanium is important as an alloying agent with <u>aluminum</u>, <u>molybdenum</u>,

<u>manganese</u>, <u>iron</u>, and other metals. Alloys of titanium are principally used for aircraft and missiles where **lightweight strength** and ability to **withstand extremes of temperature** are important.

Titanium is as strong as steel, but 45% lighter. It is 60% heavier than aluminium, but twice as strong. Does not corrode in water. 1660 °C M.pt

An alloy is a mixture made by mixing molten metals; the properties can be changed by altering the amount of each metal

Steel

Steels are a large family of metals. All of them are **alloys** in which iron is mixed with carbon and other elements. Steels are described as mild, mediumor high-carbon steels according to the percentage of carbon they contain, although this is never greater than about 1.5%.

Type of steel	Percentage of carbon	Strength			
Mild steel	Up to 0.25%	hard			
Medium carbon steel	0.25% to 0.45%	harder			
High carbon steel	0.45% to 1.50%	hardest			

The metal in the scissors contains nearly twenty times as much carbon and is many times harder than the steel in a drinking can.

Steel is recycled on a large scale.

Recycling steel saves 50% of the energy used in the extraction of iron.

Recycling helps to conserve iron ore

Recycling cuts down on the emission of greenhouse gases (carbon dioxide)

Non-metals

Non-metals such as nitrogen, oxygen, neon and argon are obtained from the air.

Identifying Hydrogen and oxygen gas

It is possible to test for the gases made by th	e electrolysis of water
Hydrogen Test	FORE
If a lighted splint is placed in hydrogen it will create a squeaky 'pop' sound.	
	Oxygen Test Oxygen will re-light a glowing splint

Advantages	Disadvantages
Only water is produced and no carbon dioxide released – therefore it does not contribute to global warming.	Large amount of electricity needed to produce hydrogen in the first place
Does not contribute to acid rain	Storage requires bulky and heavy pressurised containers
	Safe storage is also important as hydrogen makes an explosive mixture with air

NOTE: In order for the process to remain green Hydrogen must be made by the electrolysis of water using <u>renewable energy</u> (solar/wind)

Physical Properties

Fluoridation	of	tap	water
--------------	----	-----	-------

Collecting evidence

Questionnaire - data of the state of children's teeth are collected by counting the number of fillings, loss of teeth and decayed teeth children of all ages have.

The data is reliable because all the children of the school are tested with exception of absent pupils.

The comparison of areas which have been fluoridated with unfluoridated areas can be unfair without the consideration to other factors (e.g. social and economic) which are important for those areas.

Fluoride is normally in toothpaste, mouthwash and sometimes it is added to special milk

3. Acid + Base	
ACID +	BASE
Sulfuric Acid +	Copper oxide
H ₂ SO ₄ (aq) +	CuO (s) \longrightarrow CuSO ₄ (aq) + H ₂ O (I)
Hydrochloric Acid +	Copper oxide> Copper chloride + Water
2HCl (aq) +	CuO (s) \longrightarrow CuCl ₂ (aq) + H ₂ O (I)
2. Acid + Carbonate	CO_2 is made in addition to salt and water
ACID + Carbonat	te> SALT + WATER + CARBON DIOXIDE
Sulfuric Acid + Copper Carbo	Copper sulfate + Water + Carbon Dioxide
$\Pi_2 SO_4$ (aq) + CuCO ₃ ((s) \longrightarrow CuSO ₄ (aq) $+$ H ₂ O (l) $+$ CO ₂ (g)
Sulfuric Acid + Sodium Carbo	onate
H_2SO_4 (aq) + Na_2CO_3	A_3 (s) \longrightarrow Na ₂ SO ₄ (aq) + H ₂ O (l) + CO ₂ (g)
Hydrochloric Acid + Sodium Carb	bonate
2HCI (aq) + Na ₂ CO ₃ (s	s) \longrightarrow 2NaCl (aq) + H ₂ O (l) + CO ₂ (g)
Carbonate test When acid reacts with a carbonate fizzing is observed. Bubbles are seen as CO ₂ is a gas	Carbon dioxide test If clear limewater turns milky there is carbon dioxide present.

A theory that changed into scientific fact over time due to enough scientific evidence.

Alfred Wegener idea in 1915 was not scientifically accepted until more concrete facts were put forward. At the time Wegener could not explain **WHY** the plates moved

The current theory of plate tectonics became widely accepted in the 1960's.

By which time other scientists had found evidence to show that it is the Earth's plates that move and that they do so as a result of convection currents in the mantle.

Alfred Wegener suggested that the Earth's continents were once joined

He said the continents had moved apart to their present positions;

He observed the close fit of coastlines, of different countries (continents). Jigsaw fit

He also saw similar patterns of rocks and fossils, of continents separated by large oceans;

Acid Rain

In fuels such as oil and petrol there are **impurities** (i.e. oil is not pure hydrocarbons), compounds such as sulphur and nitrogen are present.

When these burn they form **polluting gases**, such as **sulfur dioxide** and **oxides of nitrogen**.

Acid rain forms when sulfur dioxide is released from factories. Acid rain forms when sulfur dioxide reacts with rain to form sulfuric acid.

It kills plants (forests) and aquatic life such as fish. It also damages buildings and statues made of limestone (calcium carbonate) and metals e.g. bridges.

POSITIV	E IONS	NEGATIVE IONS						
Name	Formula	Name	Formula					
Aluminium	Al ³⁺	Bromide	Br [_]					
Ammonium	NH_4^+	Carbonate	CO ₃ ^{2–}					
Barium	Ba ²⁺	Chloride	Cl-					
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}					
Copper(II)	Cu ²⁺	Hydroxide	OH-					
Hydrogen	\mathbf{H}^{+}	Iodide	Ι-					
Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻					
Iron(III)	Fe ³⁺	Oxide	O ²⁻					
Lithium	Li^+	Sulphate	SO ₄ ²⁻					
Magnesium	Mg ²⁺							
Nickel	Ni ²⁺							
Potassium	K ⁺							
Silver	Ag^+							
Sodium	Na ⁺							

FORMULAE FOR SOME COMMON IONS

PERIODIC TABLE OF ELEMENTS

	Ę	0					ų			_						
0	⁴ He 2 Heliun	$^{20}_{10}$ Ne	Neon	$^{40}_{18}{ m Ar}$	Argon	$^{84}_{36}{ m Kr}$	Krypto	¹³¹ Xe	Xenon	²²² Rn ⁸⁶ Rn	Radon					
2		19 9 F	Fluorine	³⁵ Cl	Chlorine	$^{80}_{35}{ m Br}$	Bromine	¹²⁷ I 53 I	Iodine	²¹⁰ ₈₅ At	Astatine					
9		¹⁶ 0	Oxygen	³² S 16	Sulphur	⁷⁹ Se	Selenium	¹²⁸ Te	Tellurium	$^{210}_{84}$ Po	Polonium					
S		14 N	Nitrogen	$^{31}_{15} \mathrm{P}$	Phosphorus	⁷⁵ As	Arsenic	¹²² Sb	Antimony	$^{209}_{83}$ Bi	Bismuth					
4		¹² C	Carbon	$^{28}_{14}$ Si	Silicon	⁷³ Ge	Germanium	$^{119}_{50}$ Sn	Tin	$^{207}_{82} {\rm Pb}$	Lead					
e		¹¹ B	Boron	$^{27}_{13}{ m Al}$	Aluminium	70 31 Ga	Gallium	115 49 In	Indium	$^{204}_{81}$ TI	Thallium					
				-		65 Zn 30 Zn	Zinc	¹¹² Cd	Cadmium	$^{201}_{80}{ m Hg}$	Mercury				Symbol	
						64 Cu	Copper	$^{108}_{47}{ m Ag}$	Silver	¹⁹⁷ Au	Gold				- Element	
						⁵⁹ Ni ²⁸ Ni	Nickel	¹⁰⁶ Pd	Palladium	¹⁹⁵ Pt	Platinum				×	Name
	1 H Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ Rh	Rhodium	$^{192}_{77}$ Ir	Iridium					· I
dne		-				⁵⁶ Fe	Iron	¹⁰¹ Ru	Ruthenium	$_{76}^{190}$ Os	Osmium			ss number	mic numbe	
Gre						55 Mn 25 Mn	Manganese	⁹⁹ Tc	Technetium	¹⁸⁶ Re	Rhenium		Key:	Ma	Atc	
						$^{52}_{24}{ m Cr}$	Chromium	$^{96}_{42}{ m Mo}$	Molybdenum	$^{184}_{74}$ W	Tungsten					
						51 V 23 V	Vanadium	$^{93}_{41} \mathrm{Nb}$	Niobium	¹⁸¹ Ta	Tantalum					
						⁴⁸ Ti 22	Titanium	$^{91}_{40}{ m Zr}$	Zirconium	179 Hf	Hafnium					
						⁴⁵ 21 Sc	Scandium	$^{89}_{39} { m Y}$	Yttrium	¹³⁹ La	Lanthanum	$^{227}_{89}$ Ac	Actinium			
17		⁹ ₄ Be	Beryllium	$^{24}_{12}{ m Mg}$	Magnesium	⁴⁰ ²⁰ Ca	Calcium	⁸⁸ 38 Sr	Strontium	¹³⁷ Ba 56	Barium	²²⁶ Ra	Radium			
1		⁷ ₃ Li	Lithium	$^{23}_{11}{ m Na}$	Sodium	$^{39}_{19}{ m K}$	Potassium	⁸⁶ 37 Rb	Rubidium	¹³³ 55 Cs	Caesium	$^{223}_{87}~{ m Fr}$	Francium			

GCSE Science: Chemistry 1 www.bangor.ac.uk